
1

Auto scaling HTCondor Schedd using Amazon Web

Services

November 1st 2014

Version 0.9

Claudio Pontili, Gabriele Garzoglio, Steven Timm

1 HTCondor and Schedd ... 3

2 Issues ... 3

2.1 Custom metrics .. 3

2.2 Scaling down policy ... 3

2.3 Scaling up policy .. 4

3 Publishing custom metric to AWS Cloudwatch ... 4

3.1 Pricing .. 4

4 Autoscaling group lifecycle.. 5

4.1 State Diagram of EC2 VM inside ASG .. 5

4.2 Lifecycle hooks ... 6

5 HTCondor Autoscaling architecture ... 7

5.1 Scaling Up vs Scaling Down ... 7

6 Tests .. 11

6.1 SSL certificate and Cname DNS record .. 11

6.2 Scaling up and down .. 11

7 Integration between AWS Condor-Schedd and FermiCloud Condor-Schedd 12

7.1 AWS Route 53 .. 12

7.2 Integration architecture .. 12

2

7.3 Delegating a subdomain to AWS Route 53 ... 13

7.3.1 Problems delegating fnal.gov subdomain ... 14

7.4 Testing the solution ... 14

3

1 HTCONDOR AND SCHEDD

HTCondor is a specialized workload management system for compute-intensive jobs. Like other full-

featured batch systems, HTCondor provides a job queueing mechanism, scheduling policy, priority scheme,

resource monitoring, and resource management. Users submit their serial or parallel jobs to HTCondor,

HTCondor places them into a queue, chooses when and where to run the jobs based upon a policy,

carefully monitors their progress, and ultimately informs the user upon completion.

Like any other software solution, each HTCondor server has limit of traffic that can handle. In these pages

we’ll show you a way to use Amazon Web Service to install, configure, scale up and down HTCondor. Finally

we’ll see a possible integration between HTCondor inside FermiCloud with AWS to handle spikes of traffic.

2 ISSUES

The architecture of HTCondor is designed to scale up easily and you can split the traffic between two or

more servers.

But if we want to use the commercial cloud like Amazon Web Service we’d like to scale up and down

dynamically the number of servers because we pay for what we use.

Doing that means solve some problems:

2.1 CUSTOM METRICS
We’d like to scale up and down our HTCondor architecture trying to follow the number of jobs submitted to

the servers.

AWS permits to create and terminate instances based on thresholds of metrics. AWS provides only few

basic metrics about our EC2 Instances like CPU, IO, Network In and Out, etc. so they are not enough for our

architecture.

The solution is to create a custom metric and put information from HTCondor server inside EC2 Instances to

AWS Cloudwatch

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/publishingMetrics.html

2.2 SCALING DOWN POLICY
With a custom AWS CloudWatch Metric we can set up a threshold to choose when our architecture must

scale down. So using Autoscaling group and Custom Metrics we can terminate instances automatically

when we don’t need them.

But the termination process is not so easy, we’d like:

 To choose what instance we’d like to terminate (E.g. the instance with less idle jobs)

 To wait at least 5 days before terminating the instance. In fact we must give to the user the time to

retrieve the output of his job.

4

To solve these problems we must handle the lifecycle of our EC2 instances inside the Auto Scaling Group.

2.3 SCALING UP POLICY
The scaling up policy should be the easiest part. Just use the custom metric and a threshold to create a new

instance using an AMI (Amazon Machine Image) when we need it.

But we’re using a pay-per-use commercial cloud and we’d like to minimize the cost. Therefore, before

creating a new instance we’ll try to find a terminating instance waiting 5 days to give the user the time to

retrieve the output of his job.

Also in this case the solution is to manage the lifecycle of out EC2 instances inside the Auto Scaling Group

3 PUBLISHING CUSTOM METRIC TO AWS CLOUDWATCH

To scale up and down our architecture properly the best option is to create some custom metric putting

information from inside our HTCondor servers to AWS CloudWatch.

The easiest way for doing that is to create a bash script using AWS CLI. The script will extract two

information using condor_status statements:

 # of running jobs

 # of idle jobs

For instance the statement to put information inside CloudWatch is:

aws cloudwatch put-metric-data --metric-name TotalRunningJobs --namespace "TestCondor" --value $trunningj --region us-west-2

We can aggregate the custom metric using instance id or autoscaling group name, the information will be

kept for 15 days.

3.1 PRICING
The price of this service is very low, in three weeks of testing we spent only few dollars

 $0.01 per 1,000 GetMetricStatistics, ListMetrics, or PutMetricData requests

 $0.50 per metric per month

 $0.10 per alarm per month

5

4 AUTOSCALING GROUP LIFECYCLE

Each EC2 instance inside an AutoScaling Group has a state. Using lifecycle hooks, we can expand the

number of these states and execute custom code when we need.

4.1 STATE DIAGRAM OF EC2 VM INSIDE ASG

Pending

Pending:Wait
(Lifecycle hook)

InService

Standby

Terminating:Wait
(Lifecycle Hook)

Terminated

When the ASG starts a new instance, it enters the pending state. The Operating System is starting.

Using lifecycle hook the istance can enter in the pending:wait state. The virtual machine is notified to enter

in the new state using AWS SNS (Simple Notification Service). During this state, we can run custom code

and choose if we want to terminate the instance or move it to InService.

When the instance is InService it’s up and running. Moreover it’s registered to the ELB (Elastic Load

Balancer) and can receive jobs from users.

We can move an istance to Standby using AWS API. In this state the instance is up and running and can be

reached with the public ip address but it’s de-registered from the ELB and it doesn’t receive job from users.

The instance can be either terminated or come back to Inservice

Using lifecycle hooks the instance can enter in Terminating:wait state. The virtual machine is notified to

enter in this state using AWS SNS (Simple Notification Service). During this state, we can run custom code

and the virtual machine is reachable using the public ip address. A terminating:wait instance cannot be

restored to InService.

When an instance is terminated the data is deleted and it cannot be restored.

6

4.2 LIFECYCLE HOOKS

You can configure a set of Lifecycle actions for each of your Auto Scaling Groups. Messages will be sent to a

notification target for the group (an SQS queue or an SNS topic) each time an instance enters the Pending

or Terminating state. Your application is responsible for handling the messages and implementing the

appropriate initialization or decommissioning operations.

After the message is sent, the instance will be in the Pending:Wait or Terminating:Wait state, as

appropriate. Once the instance enters this state, your application is given 60 minutes to do the work. If the

work is going to take more than 60 minutes, your application can extend the time by issuing a "heartbeat"

to Auto Scaling. If the time (original or extended) expires, the instance will come out of the wait state.

After the instance has been prepared or decommissioned, your application must tell Auto Scaling that the

lifecycle action is complete, and that it can move forward. This will set the state of the instance to

Pending:Proceed or Terminating:Proceed.

https://aws.amazon.com/sqs/
https://aws.amazon.com/sns/

7

5 HTCONDOR AUTOSCALING ARCHITECTURE

Custom
Metrics

(Idle and
running
jobs)

AWS
CLI

S3 Logs and Init
Scripts (versioned)

Auto Scaling Group and
ELB controlled by Custom

Metrics

Scale Up
Event

Instance Launched

Lyfecycle Hook

Hooks
queuesSNS

Custom Action:
looking for standby
instance instead of
create a new one

Java

Instance attached to Auto
Scaling Group and ELB

Scale
Down
Event

Instance Removed from
the Auto Scaling Group

and ELB
Stanby Instance (it ll be
terminated after 5 days)

Role Based
Authentication

Permissions

Queue
SNS

Custom Action: find
the right VM to

terminate and change
ASG state to standby

Java

This is a diagram of the architecture created and tested inside AWS. The list of the components is:

 An AutoScalingGroup that control when and how to scale up and down. The ASG contains a Launch

configuration where we can set the AMI, user-data (to install the additional software and script

inside the HTCondor at runtime), the instance type (e.g. m3.medium), security group, etc.

 An Elastic load balancer where the instances “InService” are registered. Only instances registered to

ELB can receive new jobs.

 At least two custom metrics. The custom metrics are created using AWS CLI

 A pending:wait lifecycle hook to execute custom code that looks for a standby instance instead of

creating a new one during the scale up event. The instance is notified to enter in the pending:wait

state using Simple Notification Service (SNS) and Simple Queue Service (SQS) using AWS Java SDK.

 A CloudWatch Alarm. The alarm send a message to SNS, from SNS the message is sent to another

SQS. After reading the message from SQS, an instance is chosen and moved to Standby.

 Either AWS CLI or AWS Java SDK use Role Based Authentication. Using it an access key and secret

key is automatically generated and rotated based on the Role attached to the EC2 instance. The

role is configured inside the Launch Configuration.

 S3 store the logs of the ELB and the Init Scripts of the EC2 instances. Instead of installing all the

software using EC2 Userdata inside the Launch Configuration, a number of script are download

from S3 and executed.

5.1 SCALING UP VS SCALING DOWN
Scaling policies are configured inside the ASG using AWS Web Console

8

But the process to scale up and down is different. When we scale up we use lifecyle hooks pending:wait but

when we scale down we use standbye state. We cannot use lifecycle hooks terminating:wait because an

instance entering in this state cannot come back to “InService”

When we scale up:

 The instance enter pending:wait state using lifecycle hook

 The lifecycle hook notifies the new state to the instance using Simple Notification Service (SNS)

 SNS send a message to Simple Queue Service (SQS)

 Using AWS Java SDK the new instance read the message from SQS and extract a lifecycle action

token from the message

 Using AWS Java SDK the new instance check if there is a standby instance inside the ASG

 If there is standby instance inside the ASG, the new istance is terminated using the lifecycle action

token. Moreover the standby instance is moved to Inservice

 If there is no standby instance inside the ASG, the new instance is moved to Inservice using the

lifecycle action token.

When we scale down:

 A CloudWatch alarm is configured to send a message to SNS when the architecture reaches the

scale down threshold.

 The message is sent to SQS. The configuration of this queue can guarantee that the message can be

read only one time.

 Each HTCondor server Inservice check the SQS every 5 minutes. When one of the server read the

message, it try to find the server with the lowest number of idle jobs and move it to “standby”

using AWS Java SDK.

 Moreover, another script is installed inside each HTCondor Server and it runs every 5 minutes. The

script checks if the instance is Standby, there is no running or idle jobs and the last completed job is

at least 5 days ago. In this case, the instance is terminated. The script uses AWS CLI and the

statements condor_status and condor_history

9

5.1.1 SQS Configuration

To scale up and down we use queues. To have the right behaviour we had to configure two parameters:

 Default Visibility Timeout: the length of time that a message received from a queue will be invisible

to other receiving components

 Message retention period: the amount of time that Amazon SQS will retain a message if it doesn’t

get deleted

The configuration of the SQS for the pending:wait lifecycle hook was:

We used these parameters because we can create more than 1 instance at the same time and in this case

the second instance could read the token of the first. So inside the java code we checked this problem and

we retry after 5 seconds.

The configuration of the SQS for the Cloudwatch allarm to scale down is:

10

As you can see setting the default visibility timeout at the same time of the message retention period we

want to minimize the possibility that the message is read by 2 instances.

We can just minimize because SQS is a distributed system. In fact reading the SQS FAQ

“Yes, under rare circumstances you might receive a previously deleted message again. This can occur in the

rare situation in which a DeleteMessage operation doesn’t delete all copies of a message because one of the

servers in the distributed Amazon SQS system isn’t available at the time of the deletion. That message copy

can then be delivered again. You should design your application so that no errors or inconsistencies occur if

you receive a deleted message again.”

But this is not a big problem. First, it’s very rare. Second, if you instance read the same message at the

same instant they will run the same code and probably select the same server to move to standby. If they

select two different server after few minutes, the ASG will trigger a scale up process and one of these

instance come back in service.

11

6 TESTS

To test the architecture we’ve used m3.medium EC2 instance type and an ASG with minimum of 1 virtual

machine and maximum 2.

The instance AMI is ami-e72863d7

6.1 SSL CERTIFICATE AND CNAME DNS RECORD
For testing purpose we’ve created a SSL certificate for the subdomain fermicondor.vexpert.it

Moreover with a DNS CNAME Record the subdomain fermicondor.vexpert.it has been redirected to the

DNS name of the ELB Schedd-1212275796.us-west-2.elb.amazonaws.com.

6.2 SCALING UP AND DOWN

In the blue colour, we can see the average number of idle jobs inside our HTCondor server inside AWS.

So after reaching the scaling up threshold, another Condor Server is created automatically and the average

number idle jobs drop down because the new server is empty.

We continued to submit jobs. During this amount of time the ELB divided the jobs between two servers.

After the job computation is completed the average number of idle jobs start to fall down slowly.

When we reached the scaling down threshold, an instance is selected and moved to standby state. At the

same time the instance is deregistered from the ELB.

12

7 INTEGRATION BETWEEN AWS CONDOR-SCHEDD AND FERMICLOUD

CONDOR-SCHEDD

A way to integrate the AWS and the Fermi solution of Condor-Schedd is to use appropriate DNS record to

redirect the traffic automatically to commercial cloud when it is up and running.

7.1 AWS ROUTE 53
Amazon Route 53 is a highly available and scalable cloud Domain Name System (DNS) web service. It is

designed to give developers and businesses an extremely reliable and cost effective way to route end users

to Internet applications by translating names like www.example.com into the numeric IP addresses like

192.0.2.1 that computers use to connect to each other.

Amazon Route 53 effectively connects user requests to infrastructure running in AWS – such as Amazon

EC2 instances, Elastic Load Balancing load balancers, or Amazon S3 buckets – and can also be used to route

users to infrastructure outside of AWS. You can use Amazon Route 53 to configure DNS health checks to

route traffic to healthy endpoints or to independently monitor the health of your application and its

endpoints. Amazon Route 53 makes it possible for you to manage traffic globally through a variety of

routing types, including Latency Based Routing, Geo DNS, and Weighted Round Robin—all of which can be

combined with DNS Failover in order to enable a variety of low-latency, fault-tolerant architectures.

Amazon Route 53 also offers Domain Name Registration – you can purchase and manage domain names

such as example.com and Amazon Route 53 will automatically configure DNS settings for your domains.

Moreover you can update all the record and configurations of Route 53 using AWS CLI or SDKs.

7.2 INTEGRATION ARCHITECTURE

Amazon Route 53
Failover and

Weighted Round
Robin

FermiCloud HTCondor
AWS HTCondor

Auto Scaling
from 0 to N
instances

Elastic Load Balancing
with Health Check

Cloudwatch Custom
Metric

We can integrate AWS HTCondor and FermiCloud HTCondor using AWS to handle spikes of traffic.

13

During tests we had:

 An ASG with a minimum of zero instances

 An ELB with a Health check that controls when the instances are up and running testing TCP port

8443

 A custom metric. Both the AWS HTCondor and FermiCloud HTCondor put statistics inside the metric

 A DNS Failover record inside Route 53 attached to the health check of the ELB. So when there is at

least one instance inside AWS the traffic is redirected to the public cloud. When there is no

instance the traffic is redirected to FermiCloud.

 A DNS Weighted Round Robin record inside Route 53 to redirect only a fraction of the traffic to

AWS (E.g. 1/3 of traffic to AWS and 2/3 of traffic to FermiCloud)

7.3 DELEGATING A SUBDOMAIN TO AWS ROUTE 53
Instead of using Route 53 as DNS for an entire domain, we can delegate only one subdomain. In this way,

we can manage only a couple of subdomain (E.G. condorintegration.fnal.gov or fifebatch-dev.fnal.gov).

For doing that we have to create 4 NS records (we need 4 to have HA) inside the main DNS Server as it’s

explained here:

http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/CreatingNewSubdomain.html#UpdateDNSP

arentDomain

In the picture you can see the configuration of two subdomain: condoraws.publiccloudexpert.com and

condorintegration.publiccloudexpert.com hosted in GoDaddy.

http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/CreatingNewSubdomain.html#UpdateDNSParentDomain
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/CreatingNewSubdomain.html#UpdateDNSParentDomain

14

7.3.1 Problems delegating fnal.gov subdomain

We’re not sure that we could delegate a subdomain of fnal.gov so we can advise a possible solution.

Instead of using Route 53 we can create a load balancer inside FermiCloud. The load balancer has to check

the AWS API Autoscaling to understand if the Amazon architecture is up and running. In this case it redirect

the traffic to Amazon, in the other case inside Fermicloud.

Of course this solution is more complex and needs code to call AWS API.

7.4 TESTING THE SOLUTION
For instance, we’ve delegated two subdomain of domain publiccloudexpert.com hosted on Godaddy:

 condoraws.publiccloudexpert.com

 condorintegration.publiccloudexpert.com

We have attached the first one to health check of the ELB to control if there at least one running instance

inside our AWS Condor-Schedd architecture. If there's, the dns record reply with the CNAME of the ELB

otherwise it sends the traffic to the ip address 131.225.155.133 (your current dev-condor-schedd inside

fermicloud).

So when the traffic is low we can turn off our AWS infrastructure and the traffic is automatically redirected

to fermi cloud.

The second record is a weighted Round Robin that sends 1/3 of the traffic

to condoraws.publiccloudexpert.com and 2/3 of the traffic to fifebatch-dev.fnal.gov.

Route53 is a powerful service because it can be updated using REST API (or SDKs) and for example we can

update the weight of the RR in function of the current number of servers inside AWS.

Last but not least, what happens if there's a fail of the connectivity of Fermilab and it remains isolated? If

you use the weighted RR DNS, 1/3 of the traffic will fail and to solve the problem we'll need to update the

records of the fermilab DNS servers manually. Not the best thing to do of course, this's the only drawback.

http://publiccloudexpert.com/
http://condoraws.publiccloudexpert.com/
http://condorintegration.publiccloudexpert.com/
http://condoraws.publiccloudexpert.com/
http://fifebatch-dev.fnal.gov/

